Transmit a codeword $x$, that belongs to an $(\ell-1)$-deletion-correcting code of length $n$, over a $t$-deletion channel for some $1\le \ell\le t<n$. Levenshtein, in 2001, proposed the problem of determining $N(n,\ell,t)+1$, the minimum number of distinct channel outputs required to uniquely reconstruct $x$. Prior to this work, $N(n,\ell,t)$ is known only when $\ell\in\{1,2\}$. Here, we provide an asymptotically exact solution for all values of $\ell$ and $t$. Specifically, we show that $N(n,\ell,t)=\binom{2\ell}{\ell}/(t-\ell)! n^{t-\ell} - O(n^{t-\ell-1})$ and in the special instance where $\ell=t$, we show that $N(n,\ell,\ell)=\binom{2\ell}{\ell}$. We also provide a conjecture on the exact value of $N(n,\ell,t)$ for all values of $n$, $\ell$, and $t$.
翻译:Levestein在2001年提出了一个问题,即确定美元(n,\ell,t)+1美元,这是独家重建美元所需的不同频道产出的最低数量。在此之前,美元(n, ell, t) 美元(n) 美元(n, n) 美元(n) 美元(t) 美元(t) 。在这项工作之前,只有在美元(n) 美元(n) 美元(n) 美元(n) 美元($) 美元(n) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 。在这里,我们为美元(ell) 和美元(t) 提供一种精确的解决方案。具体地说,我们显示,$(n,\ell) ⁇ binom2\ell} (t) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(ell) 美元(n) 美元(n) 美元(n) 美元(n) 美元(美元) 美元(n) 美元) 美元(n) 美元(n) (ell) (ell) (ell) 美元) (ell) (ell) (ell) (美元) (美元) (美元) (美元) (ell) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (ell) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (ell) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)