Meta reinforcement learning (meta RL), as a combination of meta-learning ideas and reinforcement learning (RL), enables the agent to adapt to different tasks using a few samples. However, this sampling-based adaptation also makes meta RL vulnerable to adversarial attacks. By manipulating the reward feedback from sampling processes in meta RL, an attacker can mislead the agent into building wrong knowledge from training experience, which deteriorates the agent's performance when dealing with different tasks after adaptation. This paper provides a game-theoretical underpinning for understanding this type of security risk. In particular, we formally define the sampling attack model as a Stackelberg game between the attacker and the agent, which yields a minimax formulation. It leads to two online attack schemes: Intermittent Attack and Persistent Attack, which enable the attacker to learn an optimal sampling attack, defined by an $\epsilon$-first-order stationary point, within $\mathcal{O}(\epsilon^{-2})$ iterations. These attack schemes freeride the learning progress concurrently without extra interactions with the environment. By corroborating the convergence results with numerical experiments, we observe that a minor effort of the attacker can significantly deteriorate the learning performance, and the minimax approach can also help robustify the meta RL algorithms.


翻译:元强化学习(meta RL)是元学习理念和强化学习(RL)的结合,它使该代理商能够适应使用少数样本的不同任务。然而,这种基于抽样的适应性调整也使得元RL易受对抗性攻击。通过操纵元RL中取样过程的奖励反馈,攻击者可以误导该代理商从培训经验中积累错误的知识,这在适应后处理不同任务时使该代理商的性能恶化。本文件为了解这种安全风险提供了一种游戏理论基础。特别是,我们正式将抽样攻击模式定义为攻击者与代理商之间的斯塔克尔贝格游戏,产生迷你式的配方。它导致两个在线攻击计划:Interpitt攻击和持久性攻击,使袭击者能够从培训经验中学习最佳的抽样攻击,而培训者在处理不同任务时,在$mathcal{O} (\epsilon ⁇ -2} (\\\\\\\\ 2} ) 里拉特。这些攻击计划可以将学习的进展与环境同时自由,而没有额外的相互作用。它产生微量的配方配方配方的配方的组合。它能能够使微的实验,我们观察到微的实验,通过大大的实验,可以观测微级的累合性的努力。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员