Photonic neural networks have significant potential for high-speed neural processing with low latency and ultralow energy consumption. However, the on-chip implementation of a large-scale neural network is still challenging owing to its low scalability. Herein, we propose the concept of a photonic neural field and implement it experimentally on a silicon chip to realize highly scalable neuro-inspired computing. In contrast to existing photonic neural networks, the photonic neural field is a spatially continuous field that nonlinearly responds to optical inputs, and its high spatial degrees of freedom allow for large-scale and high-density neural processing on a millimeter-scale chip. In this study, we use the on-chip photonic neural field as a reservoir of information and demonstrate a high-speed chaotic time-series prediction with low errors using a training approach similar to reservoir computing. We discuss that the photonic neural field is potentially capable of executing more than one peta multiply-accumulate operations per second for a single input wavelength on a footprint as small as a few square millimeters. In addition to processing, the photonic neural field can be used for rapidly sensing the temporal variation of an optical phase, facilitated by its high sensitivity to optical inputs. The merging of optical processing with optical sensing paves the way for an end-to-end data-driven optical sensing scheme.


翻译:光线神经网络具有高速神经处理、低悬浮度和超低能消耗的巨大潜力,但大型神经网络由于缩缩放性低,在芯片上实施大型神经网络仍具有挑战性。在此,我们提出光线神经场的概念,并在硅芯上实验实施,以实现高度可伸缩的神经启发型计算。与现有的光线神经网络相比,光线神经场是一个空间连续的场,非线性地响应光学投入,其高空间自由度允许对毫米级芯片进行大规模和高密度神经网络处理。在本研究中,我们利用光线线外神经场作为信息库,并用类似于储电图计算的培训方法,展示高速混乱的时间序列预测,低误差率。我们讨论光线神经场有可能执行一个大于一小粒子倍增积的操作,其空间自由度允许对小的足迹进行大规模和高密度的神经神经网络处理。除了快速的光学光学感测外,还利用光学感光学感光场的快速感测,还利用光学感测技术进行光学感光场的光学感测。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员