We aim at advancing blind image quality assessment (BIQA), which predicts the human perception of image quality without any reference information. We develop a general and automated multitask learning scheme for BIQA to exploit auxiliary knowledge from other tasks, in a way that the model parameter sharing and the loss weighting are determined automatically. Specifically, we first describe all candidate label combinations (from multiple tasks) using a textual template, and compute the joint probability from the cosine similarities of the visual-textual embeddings. Predictions of each task can be inferred from the joint distribution, and optimized by carefully designed loss functions. Through comprehensive experiments on learning three tasks - BIQA, scene classification, and distortion type identification, we verify that the proposed BIQA method 1) benefits from the scene classification and distortion type identification tasks and outperforms the state-of-the-art on multiple IQA datasets, 2) is more robust in the group maximum differentiation competition, and 3) realigns the quality annotations from different IQA datasets more effectively. The source code is available at https://github.com/zwx8981/LIQE.
翻译:我们旨在推进盲图像质量评估(BIQA)的研究,从而预测人类对图像质量的感知,而无需任何参考信息。我们开发了一种通用的、自动化的多任务学习方案,用于BIQA,以利用其它任务的辅助知识,参数共享和损失加权方式将自动确定。具体而言,我们首先使用文本模板描述所有候选标签组合(来自多个任务),并从视觉-文本嵌入的余弦相似性计算联合概率。每个任务的预测都可以从联合分布中推断出来,并通过精心设计的损失函数进行优化。通过对学习三个任务(BIQA、场景分类和失真类型识别)的全面实验,我们验证了所提出的BIQA方法:1)从场景分类和失真类型识别任务中受益,并且在多个IQA数据集上优于现有技术,2)在组最大差异比赛中更具鲁棒性,3)更有效地重新对齐来自不同IQA数据集的质量注释。源代码可在https://github.com/zwx8981/LIQE上找到。