Facial landmark detection plays an important role for the similarity analysis in artworks to compare portraits of the same or similar artists. With facial landmarks, portraits of different genres, such as paintings and prints, can be automatically aligned using control-point-based image registration. We propose a deep-learning-based method for facial landmark detection in high-resolution images of paintings and prints. It divides the task into a global network for coarse landmark prediction and multiple region networks for precise landmark refinement in regions of the eyes, nose, and mouth that are automatically determined based on the predicted global landmark coordinates. We created a synthetically augmented facial landmark art dataset including artistic style transfer and geometric landmark shifts. Our method demonstrates an accurate detection of the inner facial landmarks for our high-resolution dataset of artworks while being comparable for a public low-resolution artwork dataset in comparison to competing methods.
翻译:在艺术作品中进行相似性分析以比较相同或类似艺术家的肖像方面,法西斯里程碑探测对艺术作品的相似性分析起着重要作用。通过面部标志,不同类型艺术的肖像,例如绘画和印刷品的肖像,可以使用基于控制点的图像登记自动对齐。我们建议了一种基于深层学习的方法,用于在高分辨率的绘画和印刷品图像中进行面部标志性探测。它把这项任务分成一个粗皮里程碑预测全球网络和多个区域网络,以便在眼睛、鼻子和口腔区域进行精确的标志性改进,这些区域根据预测的全球里程碑坐标自动确定。我们创建了一个合成增强的面部标志性艺术数据集,包括艺术风格转移和几何等几何标志性变化。我们的方法显示,我们高分辨率艺术作品数据集的内部面像标的准确探测,同时与竞争性方法相比,可以与公共低分辨率艺术作品数据集相比,比较。