Domain alignment is currently the most prevalent solution to unsupervised domain-adaptation tasks and are often being presented as minimizers of some theoretical upper-bounds on risk in the target domain. However, further works revealed severe inadequacies between theory and practice: we consolidate this analysis and confirm that imposing domain invariance on features is neither necessary nor sufficient to obtain low target risk. We instead argue that successful deep domain adaptation rely largely on hidden inductive biases found in the common practice, such as model pre-training or design of encoder architecture. We perform various ablation experiments on popular benchmarks and our own synthetic transfers to illustrate their role in prototypical situations. To conclude our analysis, we propose to meta-learn parametric inductive biases to solve specific transfers and show their superior performance over handcrafted heuristics.


翻译:域对齐是目前未受监督的域适应任务最普遍的解决办法,往往被作为目标领域某些理论风险上限的最小化工具提出,但进一步的工作揭示了理论与实践之间的严重缺陷:我们合并了这一分析,确认将地貌差异强加于地貌既不必要,也不足以获得低目标风险;相反,我们争辩说,成功的深域适应在很大程度上依赖于常见做法中发现的隐蔽的诱导偏见,例如模型培训前或编码器结构的设计。我们进行了各种关于流行基准和我们自身合成转移的消化实验,以说明它们在原型情况下的作用。为了完成我们的分析,我们建议对具体转移进行元性偏差的模拟偏差,并表明其优于手工艺的超能性能。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
242+阅读 · 2020年4月19日
简明扼要!Python教程手册,206页pdf
专知会员服务
46+阅读 · 2020年3月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月4日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员