The bidomain model is the standard model for cardiac electrophysiology. In this paper, we investigate the instability and asymptotic behavior of planar fronts and planar pulses of the bidomain Allen-Cahn equation and the bidomain FitzHugh-Nagumo equation in two spatial dimension. In previous work, it was shown that planar fronts of the bidomain Allen-Cahn equation can become unstable in contrast to the classical Allen-Cahn equation. We find that, after the planar front is destabilized, a rotating zigzag front develops whose shape can be explained by simple geometric arguments using a suitable Frank diagram. We also show that the Hopf bifurcation through which the front becomes unstable can be either supercritical or subcritical, by demonstrating a parameter regime in which a stable planar front and zigzag front can coexist. In our computational studies of the bidomain FitzHugh-Nagumo pulse solution, we show that the pulses can also become unstable much like the bidomain Allen-Cahn fronts. However, unlike the bidomain Allen-Cahn case, the destabilized pulse does not necessarily develop into a zigzag pulse. For certain choice of parameters, the destabilized pulse can disintegrate entirely. These studies are made possible by the development of a numerical scheme that allows for the accurate computation of the bidomain equation in a two dimensional strip domain of infinite extent.


翻译:色素模型是心电生理学的标准模型。 在本文中,我们调查了图莫曼-艾伦-卡恩方程式以及两个空间层面的图莫曼-艾伦-卡恩方程式和图莫因-菲茨-休格-纳古莫方程式的不稳定性和无症状行为。在先前的工作中,我们发现图莫曼-艾伦-卡恩方程式的平面模型与古老的阿伦-卡恩方程式相比,可能会变得不稳定。我们发现,在平面平面不稳定之后,一个旋转的西格扎格前方形发展,其形状可以通过使用合适的弗兰克方形图的简单精确几何参数来解释。我们还表明,通过Hopf 双面结构使前方变得不稳定的超临界性或次临界性方方方方程式,通过展示一个参数制度,使稳定的平面和兹格扎格方程式能够共存。我们在对图莫林-卡恩方程式的脉冲解决方案进行计算研究时,我们发现脉冲也变得不稳定性很大,像艾伦-卡恩方阵阵阵阵阵。 但是,与亚伦-卡平面的平面的平面的脉冲研究不同,这些平流模型的脉冲研究, 能够使这些平流的脉冲发展成为了某种的脉冲研究。

0
下载
关闭预览

相关内容

【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
34+阅读 · 2021年4月16日
【AAAI2021】记忆门控循环网络
专知会员服务
48+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月1日
VIP会员
相关VIP内容
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
34+阅读 · 2021年4月16日
【AAAI2021】记忆门控循环网络
专知会员服务
48+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员