A frequency $n$-cube $F^n(4;2,2)$ is an $n$-dimensional $4$-by-...-by-$4$ array filled by $0$s and $1$s such that each line contains exactly two $1$s. We classify the frequency $4$-cubes $F^4(4;2,2)$, find a testing set of size $25$ for $F^3(4;2,2)$, and derive an upper bound on the number of $F^n(4;2,2)$. Additionally, for any $n$ greater than $2$, we construct an $F^n(4;2,2)$ that cannot be refined to a latin hypercube, while each of its sub-$F^{n-1}(4;2,2)$ can. Keywords: frequency hypercube, frequency square, latin hypercube, testing set, MDS code
翻译:频率为4,2,2美元,每立方美元,每立方美元4美元,每立方美元,每立方美元4美元,每立方美元,每立方美元,每立方美元,每立方美元,每立方美元,每立方美元一美元,每立方美元,每立方美元4,4,4,2,2美元,每立方美元,每立方美元,每立方美元4,4,2,2美元,每立方美元,每立方美元25美元的测试,每立方美元,每立方美元4,2,2,2美元,每立方美元,每立方美元,每立方美元,每立方美元4,2,2美元。关键词:频超立方、频方、频方方、拉丁超立方、测试集、MDS代码。