A recent take towards Federated Analytics (FA), which allows analytical insights of distributed datasets, reuses the Federated Learning (FL) infrastructure to evaluate the summary of model performances across the training devices. However, the current realization of FL adopts single server-multiple client architecture with limited scope for FA, which often results in learning models with poor generalization, i.e., an ability to handle new/unseen data, for real-world applications. Moreover, a hierarchical FL structure with distributed computing platforms demonstrates incoherent model performances at different aggregation levels. Therefore, we need to design a robust learning mechanism than the FL that (i) unleashes a viable infrastructure for FA and (ii) trains learning models with better generalization capability. In this work, we adopt the novel democratized learning (Dem-AI) principles and designs to meet these objectives. Firstly, we show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn, as a practical framework to empower generalization capability in support of FA. Secondly, we validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions by leveraging the distributed computing infrastructure. The distributed edge computing servers construct regional models, minimize the communication loads, and ensure distributed data analytic application's scalability. To that end, we adhere to a near-optimal two-sided many-to-one matching approach to handle the combinatorial constraints in Edge-DemLearn and solve it for fast knowledge acquisition with optimization of resource allocation and associations between multiple servers and devices. Extensive simulation results on real datasets demonstrate the effectiveness of the proposed methods.


翻译:最近采用了联邦分析(FA)方法,对分布式数据集进行分析,重新使用联邦学习(FL)基础设施,以评估培训设备中模型性能的汇总;然而,FL目前采用单一服务器-多功能客户结构,对FA而言范围有限,目前采用FL采用单一服务器-多功能客户结构,这往往导致学习模式不够全面化,即处理新/不见数据的能力,用于现实世界应用。此外,一个带有分布式计算平台的等级FL结构显示不同汇总级的不一致性模型性能。因此,我们需要设计一个强健的学习机制,而不是FL(一)为FA推出一个可行的基础设施性能基础设施,(二)以更好的通用能力培养学习模式-多功能配置模型性能;在这项工作中,我们采用新的民主化学习(Dem-AI)原则和设计来实现这些目标。首先,我们展示了拟议的边际辅助式民主化学习机制的等级学习结构结构,即Edge-DemLearn,作为支持FA的快速化能力的一个实用框架。第二,我们验证了EG-Dego-DeopLirealal配置模型配置模型, 配置模型配置模型配置模型配置模型的学习模型,在区域进行灵活的存储工具中,在存储模型和存储模型和存储中进行数据分析中,在存储系统中,在存储模型和存储系统上,在存储系统上将数据流流化数据流化数据分析中,以构建一个模型和存储,在存储工具中,以建立一个模型上,以建立一个可控,在存储式数据库中,在存储式存储式服务器上,在存储式的存储式的存储式的存储式的存储式的存储式的存储式的存储式的存储式的存储式的存储式数据库中,以建立一个数据库中,在存储式的存储式的存储式的存储式系统上进行中进行中,在存储器,以建立中,以建立中进行中进行中进行中进行到存储式的存储式的存储式的存储式的存储式的存储式的存储式的存储式的存储式的存储式的计算,以建立一个可控。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
52+阅读 · 2020年9月7日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年1月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Precision-Weighted Federated Learning
Arxiv
0+阅读 · 2021年7月20日
Relay-Assisted Cooperative Federated Learning
Arxiv
0+阅读 · 2021年7月20日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年1月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员