Managing a large-scale portfolio with many assets is one of the most challenging tasks in the field of finance. It is partly because estimation of either covariance or precision matrix of asset returns tends to be unstable or even infeasible when the number of assets $p$ exceeds the number of observations $n$. For this reason, most of the previous studies on portfolio management have focused on the case of $p < n$. To deal with the case of $p > n$, we propose to use a new Bayesian framework based on adaptive graphical LASSO for estimating the precision matrix of asset returns in a large-scale portfolio. Unlike the previous studies on graphical LASSO in the literature, our approach utilizes a Bayesian estimation method for the precision matrix proposed by Oya and Nakatsuma (2020) so that the positive definiteness of the precision matrix should be always guaranteed. As an empirical application, we construct the global minimum variance portfolio of $p=100$ for various values of $n$ with the proposed approach as well as the non-Bayesian graphical LASSO approach, and compare their out-of-sample performance with the equal weight portfolio as the benchmark. We also compare them with portfolios based on random matrix theory filtering and Ledoit-Wolf shrinkage estimation which were used by Torri et al. (2019). In this comparison, the proposed approach produces more stable results than the non-Bayesian approach and the other comparative approaches in terms of Sharpe ratio, portfolio composition and turnover even if $n$ is much smaller than $p$.
翻译:由于这一原因,以往关于投资组合管理的大多数研究都侧重于美元 < n美元的情况。为了处理美元 > n美元的情况,我们提议采用一个基于适应性图形LASSO的新的Bayesian框架来估计大规模投资组合中资产回报的精确矩阵。 与以往关于阿盟SO的比较性研究不同,我们的方法对Oya和Naktsuma(202020年)提出的精确矩阵采用巴伊西亚估算方法,以便保证准确矩阵的积极确定性。作为经验应用,我们建议采用全球最低差异组合P=100美元的方法来计算各种价值的美元,以及非Bayesian的大规模组合中资产回报精确矩阵。 与文献中关于阿萨索的比较性资产回报表相比,我们的方法往往不稳定,甚至无法在Oya和Naktsumma(2020年)提出的精确矩阵中采用巴伊斯估算方法,这样可以保证精确矩阵的积极确定性。 我们用这个模型来比较非Bayesian 美元组合的准确度矩阵方法以及非Bayesian LASSO 方法。