This paper targets the problem of procedural multimodal machine comprehension (M3C). This task requires an AI to comprehend given steps of multimodal instructions and then answer questions. Compared to vanilla machine comprehension tasks where an AI is required only to understand a textual input, procedural M3C is more challenging as the AI needs to comprehend both the temporal and causal factors along with multimodal inputs. Recently Yagcioglu et al. [35] introduced RecipeQA dataset to evaluate M3C. Our first contribution is the introduction of two new M3C datasets- WoodworkQA and DecorationQA with 16K and 10K instructional procedures, respectively. We then evaluate M3C using a textual cloze style question-answering task and highlight an inherent bias in the question answer generation method from [35] that enables a naive baseline to cheat by learning from only answer choices. This naive baseline performs similar to a popular method used in question answering- Impatient Reader [6] that uses attention over both the context and the query. We hypothesized that this naturally occurring bias present in the dataset affects even the best performing model. We verify our proposed hypothesis and propose an algorithm capable of modifying the given dataset to remove the bias elements. Finally, we report our performance on the debiased dataset with several strong baselines. We observe that the performance of all methods falls by a margin of 8% - 16% after correcting for the bias. We hope these datasets and the analysis will provide valuable benchmarks and encourage further research in this area.


翻译:本文针对的是程序多式联运机器理解问题(M3C) 。 这项任务需要AI 来理解多式联运指令的某些特定步骤,然后回答问题。 与香草机器理解任务相比,如果需要AI只理解文字输入,程序M3C就更具挑战性,因为AI需要理解时间和因果关系因素以及多式联运输入。 最近Yagcioglu等人(35)介绍了RegipeQA数据集来评价M3C。 我们的第一个贡献是引入两个新的 M3C 数据集- WoodworkQA 和装饰QA, 分别使用 16K 和 10K 教学程序。 然后我们使用一个文字相交风格解解答任务来评价香草机机机理解任务,并强调问题解答方法从[35] 中理解时间和因果关系的内在偏见。 最近Yagciocioleglulate bas 和Readger [6] 采用了一种在回答问题时使用的流行方法。 我们假设在数据设置了整个背景和查询时,这种自然出现的偏差将进一步影响着最佳的模型。 我们用16种模型解析的模型, 我们最后用了一种假设和算算算出我们的一些数据基准。 我们用了一种能的精确的数据, 我们用了这些基准, 我们用了这些模型来修正了一种数据推算测算出了这些数据。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2018年11月29日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员