We consider frugal splitting operators for finite sum monotone inclusion problems, i.e., splitting operators that use exactly one direct or resolvent evaluation of each operator of the sum. A novel representation of these operators in terms of what we call a generalized primal-dual resolvent is presented. This representation reveals a number of new results regarding lifting numbers, existence of solution maps, and parallelizability of the forward/backward evaluations. We show that the minimal lifting is $n-1-f$ where $n$ is the number of monotone operators and $f$ is the number of direct evaluations in the splitting. Furthermore, we show that this lifting number is only achievable as long as the first and last evaluation are resolvent evaluations. In the case of frugal resolvent splitting operators, these results recovers the results of Ryu and Malitsky--Tam. The representation also enables a unified convergence analysis and we present a generally applicable theorem for the convergence and Fej\'er monotonicity of fixed point iterations of frugal splitting operators with cocoercive direct evaluations. We conclude by constructing a new convergent and parallelizable frugal splitting operator with minimal lifting.


翻译:我们考虑为有限和单调单调包容问题进行节制分裂操作者,即使用对每个操作者的一次直接或决断评价的分解操作者,即对每个操作者进行精确的直接或决断评价的分解操作者。我们提出这些操作者以我们所称的普遍初等和双向决断者为新的表述。这个表述揭示了一些关于提高数字、存在解决方案图以及前向/后向评价的平行性的新结果。我们表明,最小的提振是n-f美元,其中一美元是单调操作者的数目,而美元是分解过程中的直接评价的数目。此外,我们表明,只有在第一次和最后一次评价是决断评价的情况下,才能实现这一提振数字。在节制分裂操作者中,这些结果收回了隆和马利特斯基-塔姆的结果。这种表述还能够进行统一的趋同分析,我们提出一个普遍适用的术语用于统一和Fej\'er单调点的固定分解分解操作者与共交直接评价的数目。我们通过与最低分解的分解的分解操作者进行新的平行和分解的结。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月10日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员