In this paper we propose a novel square root sliding-window bundle adjustment suitable for real-time odometry applications. The square root formulation pervades three major aspects of our optimization-based sliding-window estimator: for bundle adjustment we eliminate landmark variables with nullspace projection; to store the marginalization prior we employ a matrix square root of the Hessian; and when marginalizing old poses we avoid forming normal equations and update the square root prior directly with a specialized QR decomposition. We show that the proposed square root marginalization is algebraically equivalent to the conventional use of Schur complement (SC) on the Hessian. Moreover, it elegantly deals with rank-deficient Jacobians producing a prior equivalent to SC with Moore-Penrose inverse. Our evaluation of visual and visual-inertial odometry on real-world datasets demonstrates that the proposed estimator is 36% faster than the baseline. It furthermore shows that in single precision, conventional Hessian-based marginalization leads to numeric failures and reduced accuracy. We analyse numeric properties of the marginalization prior to explain why our square root form does not suffer from the same effect and therefore entails superior performance.
翻译:在本文中,我们提出了适合实时odorisa 应用的新型平方根滑动窗口捆绑调整。 平方根配方占了我们基于优化的滑动窗窗天象仪的三个主要方面: 捆绑调整我们消除了带有空空投的里程碑变量; 在我们使用黑森的矩阵平方根之前存储了边缘化; 当旧的边缘化使我们避免形成正常方程式, 并直接以专门的 QR 分解法更新平方根时, 我们发现, 拟议的平方根边缘化与黑森平方根补充( SC) 的常规使用相仿。 此外, 它优雅地与低级的雅各布人进行了交易, 前者与SC 等同, Moore- Penrose 反向。 我们对真实世界数据集的视觉和视觉内皮色测量的评估表明, 提议的估测算器比基线要快36% 。 我们还表明, 在单一精确度、 常规的赫西边缘化导致数字失败和准确性降低。 此外, 我们分析边缘化的数值属性与摩尔- Penrosebreal 之前的特性不会影响。