Series expansions of isotropic Gaussian random fields on $\mathbb{S}^2$ with independent Gaussian coefficients and localized basis functions are constructed. Such representations provide an alternative to the standard Karhunen-Lo\`eve expansions of isotropic random fields in terms of spherical harmonics. Their multilevel localized structure of basis functions is especially useful in adaptive algorithms. The basis functions are obtained by applying the square root of the covariance operator to spherical needlets. Localization of the resulting covariance-dependent multilevel basis is shown under decay conditions on the angular power spectrum of the random field. In addition, numerical illustrations are given and an application to random elliptic PDEs on the sphere is analyzed.
翻译:在 $\ mathbb{S ⁇ 2$ 上, 以独立高斯系数和本地基功能构建了等地随机字段的系列扩展。 这些表示方式提供了一种替代标准球体调和的等地随机字段的Karhunen- Lo ⁇ eve扩展。 它们的多级本地基函数结构在适应算法中特别有用。 基础函数是通过将共变操作器的平方根应用到球形需要小行星上获得的。 由此产生的共变多级基点的本地化在随机字段的角力谱的衰变条件下显示。 此外,还给出了数字插图,并分析了球体上随机椭圆 PDE 的应用 。