The clustering technique has attracted a lot of attention as a promising strategy for parallel debugging in multi-fault scenarios, this heuristic approach (i.e., failure indexing or fault isolation) enables developers to perform multiple debugging tasks simultaneously through dividing failed test cases into several disjoint groups. When using statement ranking representation to model failures for better clustering, several factors influence clustering effectiveness, including the risk evaluation formula (REF), the number of faults (NOF), the fault type (FT), and the number of successful test cases paired with one individual failed test case (NSP1F). In this paper, we present the first comprehensive empirical study of how these four factors influence clustering effectiveness. We conduct extensive controlled experiments on 1060 faulty versions of 228 simulated faults and 141 real faults, and the results reveal that: 1) GP19 is highly competitive across all REFs, 2) clustering effectiveness decreases as NOF increases, 3) higher clustering effectiveness is easier to achieve when a program contains only predicate faults, and 4) clustering effectiveness remains when the scale of NSP1F is reduced to 20%.


翻译:集群技术作为一种在多过失假设情景中平行调试的有希望的战略,吸引了人们的极大关注。 这种超常方法(即失败指数化或断层隔离)使开发者能够通过将失败的测试案例分成几个脱节小组,同时执行多重调试任务。 当使用对模型失败的分级代表来模拟更好的集群时,有几个因素影响集群的有效性,包括风险评估公式(REF)、缺陷数目(NOF)、缺陷类型(FT)和成功测试案例数(NSP1F),在本文件中,我们介绍了关于这四个因素如何影响集群有效性的第一次全面经验研究。我们对1 060个错误版本的228个模拟缺陷和141个实际缺陷进行了广泛的控制实验,结果显示:(1) GP19在所有可再生能源框架中具有高度竞争力,(2) 集群效力随着NOF的增加而下降,(3) 当一个方案只包含上游缺陷时,提高的集群效力比较容易实现,(4) 当NSP1F的规模降至20%时,集群的有效性仍然存在。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员