This paper studies the problem of identifying any $k$ distinct arms among the top $\rho$ fraction (e.g., top 5\%) of arms from a finite or infinite set with a probably approximately correct (PAC) tolerance $\epsilon$. We consider two cases: (i) when the threshold of the top arms' expected rewards is known and (ii) when it is unknown. We prove lower bounds for the four variants (finite or infinite arms, and known or unknown threshold), and propose algorithms for each. Two of these algorithms are shown to be sample complexity optimal (up to constant factors) and the other two are optimal up to a log factor. Results in this paper provide up to $\rho n/k$ reductions compared with the "$k$-exploration" algorithms that focus on finding the (PAC) best $k$ arms out of $n$ arms. We also numerically show improvements over the state-of-the-art.


翻译:本文研究从一定或无限的、大概大致正确(PAC)的容积$\ epsilon$(e)中确定武器顶部部分(例如,顶部5 ⁇ )中任何一股美元不同的武器(例如,顶部5 ⁇ )的问题。我们考虑了两个案例:(一) 当知道顶层武器预期奖赏的门槛时,和(二) 当它不为人知时,我们证明四个变种(无限或无限武器,以及已知或未知的门槛)的界限较低,并提出了每一种的算法。其中两种算法被证明为最优化的样本复杂度(最高为常数),而其他两种算法则最优于一个日志系数。本文的结果提供了最高为$rho n/k$的削减额,而“美元-勘探”的算法则侧重于从一元武器中找到最佳的(PAC)一美元。我们还用数字展示了对“状态”的改进。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
已删除
将门创投
5+阅读 · 2019年4月29日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月8日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
已删除
将门创投
5+阅读 · 2019年4月29日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员