Accurate detection and segmentation of marine debris is important for keeping the water bodies clean. This paper presents a novel dataset for marine debris segmentation collected using a Forward Looking Sonar (FLS). The dataset consists of 1868 FLS images captured using ARIS Explorer 3000 sensor. The objects used to produce this dataset contain typical house-hold marine debris and distractor marine objects (tires, hooks, valves,etc), divided in 11 classes plus a background class. Performance of state of the art semantic segmentation architectures with a variety of encoders have been analyzed on this dataset and presented as baseline results. Since the images are grayscale, no pretrained weights have been used. Comparisons are made using Intersection over Union (IoU). The best performing model is Unet with ResNet34 backbone at 0.7481 mIoU. The dataset is available at https://github.com/mvaldenegro/marine-debris-fls-datasets/
翻译:对海洋废弃物进行准确的探测和分解对于保持水体清洁十分重要。本文件展示了利用前视声纳(FLS)收集的海洋废弃物分解新数据集。数据集由使用ARIS 3000传感器采集的1868 FLS图像组成。用于生成该数据集的物体包括典型的住家式海洋废弃物和分散式海洋物体(轮胎、钩子、阀门、节流、etc),分为11个等级加上一个背景类别。在这个数据集上分析了具有各种编码器的艺术语义分解结构的性能,并将其作为基线结果提出。由于图像为灰度,没有使用预先训练的重量。比较是使用Intersection over Union(IoU)进行的。最佳表现模型是ResNet34脊椎为0.7481 mIoU的Unet。该数据集见 https://github.com/mvaldenegro/marine-debris-flas- datasets/