The prevalence of memes on social media has created the need to sentiment analyze their underlying meanings for censoring harmful content. Meme censoring systems by machine learning raise the need for a semi-supervised learning solution to take advantage of the large number of unlabeled memes available on the internet and make the annotation process less challenging. Moreover, the approach needs to utilize multimodal data as memes' meanings usually come from both images and texts. This research proposes a multimodal semi-supervised learning approach that outperforms other multimodal semi-supervised learning and supervised learning state-of-the-art models on two datasets, the Multimedia Automatic Misogyny Identification and Hateful Memes dataset. Building on the insights gained from Contrastive Language-Image Pre-training, which is an effective multimodal learning technique, this research introduces SemiMemes, a novel training method that combines auto-encoder and classification task to make use of the resourceful unlabeled data.


翻译:社交媒体上Memes的普遍存在导致了需要对其进行情感分析以审查有害内容。 机器学习的Meme审查系统需要半监督学习解决方案,以利用互联网上大量未标记的Memes,并使注释过程更加简单。 此外,该方法需要利用多模态数据,因为Memes的含义通常来自图像和文本两方面。 本研究提出了一种多模态半监督学习方法,该方法在两个数据集(多媒体自动女性仇视识别和令人讨厌的Memes数据集)上的表现优于其他多模态半监督学习和监督学习现有模型。 建立在对比语言 - 图像预训练的洞察力之上,这项研究引入了SemiMemes,一种将自编码器和分类任务结合起来利用丰富的未标记数据的新型训练方法。

0
下载
关闭预览

相关内容

半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。当使用半监督学习时,将会要求尽量少的人员来从事工作,同时,又能够带来比较高的准确性,因此,半监督学习目前正越来越受到人们的重视。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员