We present a principled data-driven strategy for learning deterministic hydrodynamic models directly from stochastic non-equilibrium active particle trajectories. We apply our method to learning a hydrodynamic model for the propagating density lanes observed in self-propelled particle systems and to learning a continuum description of cell dynamics in epithelial tissues. We also infer from stochastic particle trajectories the latent phoretic fields driving chemotaxis. This demonstrates that statistical learning theory combined with physical priors can enable discovery of multi-scale models of non-equilibrium stochastic processes characteristic of collective movement in living systems.
翻译:我们提出了一个原则性的数据驱动战略,直接从随机非平衡性活性粒子轨迹中学习确定性流体动力模型,我们采用的方法是学习一种在自推进粒子系统中观测到的传播密度通道流体动力模型,并学习对上皮组织细胞动态的连续描述,我们还从随机粒子轨迹中推断出诱导化疗的潜伏运动场,这表明统计学习理论与物理前科相结合,可以发现生活系统中集体运动特有的非平衡性随机过程的多尺度模型。