Paraphrase generation plays an essential role in natural language process (NLP), and it has many downstream applications. However, training supervised paraphrase models requires many annotated paraphrase pairs, which are usually costly to obtain. On the other hand, the paraphrases generated by existing unsupervised approaches are usually syntactically similar to the source sentences and are limited in diversity. In this paper, we demonstrate that it is possible to generate syntactically various paraphrases without the need for annotated paraphrase pairs. We propose Syntactically controlled Paraphrase Generator (SynPG), an encoder-decoder based model that learns to disentangle the semantics and the syntax of a sentence from a collection of unannotated texts. The disentanglement enables SynPG to control the syntax of output paraphrases by manipulating the embedding in the syntactic space. Extensive experiments using automatic metrics and human evaluation show that SynPG performs better syntactic control than unsupervised baselines, while the quality of the generated paraphrases is competitive. We also demonstrate that the performance of SynPG is competitive or even better than supervised models when the unannotated data is large. Finally, we show that the syntactically controlled paraphrases generated by SynPG can be utilized for data augmentation to improve the robustness of NLP models.
翻译:参数生成在自然语言流程( NLPP) 中发挥着必不可少的作用, 它有许多下游应用程序。 但是, 受监督的参数生成模式需要许多附加说明的参数配对, 通常要花很多钱才能获得。 另一方面, 由现有未经监督的方法产生的参数配对, 通常与源句相类似, 并且多样化程度有限。 在本文中, 我们证明, 可以在不需要附加说明的参数配对的情况下生成各种综合参数。 我们提议了协同控制参数生成( Syntocontroductive Plass ), 这是一种基于编码器的脱解密的参数配对模型, 一种基于编码的参数配对模型, 通常要花费昂贵的购买。 另一方面, 由未受监督的方法生成的语句的语句的语句的语句拼音法通常与源句相似, 且在多样性上有限。 使用自动度测量和人文评估的实验显示, SynPGPG比未受监督的基线的参数要更好, 而生成的原言语句的质量是竞争性的。 最后, 我们通过监管的NPG VIP VAL 模型显示, 当我们使用的大型数据生成的高级模型使用时, 测试性模型可以改进了。