The Shapley value (SV) is a fair and principled metric for contribution evaluation in cross-silo federated learning (cross-silo FL), in which organizations, i.e., clients, collaboratively train prediction models with the coordination of a parameter server. However, existing SV calculation methods for FL assume that the server can access the raw FL models and public test data, which might not be a valid assumption in practice given the emerging privacy attacks on FL models and that test data might be clients' private assets. Hence, in this paper, we investigate the problem of secure SV calculation for cross-silo FL. We first propose a one-server solution, HESV, which is based solely on homomorphic encryption (HE) for privacy protection and has some considerable limitations in efficiency. To overcome these limitations, we further propose an efficient two-server protocol, SecSV, which has the following novel features. First, SecSV utilizes a hybrid privacy protection scheme to avoid ciphertext-ciphertext multiplications between test data and models, which are extremely expensive under HE. Second, a more efficient secure matrix multiplication method is proposed for SecSV. Third, SecSV strategically identifies and skips some test samples without significantly affecting the evaluation accuracy. Our experiments demonstrate that SecSV is 5.9-18.0 times as fast as HESV while sacrificing a limited loss in the accuracy of calculated SVs.


翻译:沙普利值(SV)是跨筒联队学习(跨筒联校 FL)的缴款评价的一个公平而有原则的衡量标准,各组织,即客户,在跨筒联队学习(跨筒联校 FL)中合作培训预测模型,并协调参数服务器,然而,现有的FLSV计算方法假定服务器可以访问原始FL模型和公共测试数据,鉴于对FL模型的隐私攻击正在出现,测试数据可能是客户的私人资产,这在实践中可能不是一种有效的假设。因此,我们在本文件中调查了跨筒联队FL的安全SV计算问题。我们首先提出一个只基于同质加密(HE)的一服务器解决方案,即HESV,该软件仅基于同质加密(HE),以保护隐私,在效率方面有一些相当大的限制。为克服这些限制,我们还进一步提议一个高效的双服务器协议(SecSV),其具有以下新特点。SecV利用一种混合隐私保护计划,以避免跨筒VLFL数据和模型之间的重复。在测试中提出一个极其昂贵的测试方法,而SEV的精确度则在ES进行一个战略性的快速测试中确定一个具有战略性的精度的精度。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员