Sixth-generation (6G) networks anticipate intelligently supporting a massive number of coexisting and heterogeneous slices associated with various vertical use cases. Such a context urges the adoption of artificial intelligence (AI)-driven zero-touch management and orchestration (MANO) of the end-to-end (E2E) slices under stringent service level agreements (SLAs). Specifically, the trustworthiness of the AI black-boxes in real deployment can be achieved by explainable AI (XAI) tools to build transparency between the interacting actors in the slicing ecosystem, such as tenants, infrastructure providers and operators. Inspired by the turbo principle, this paper presents a novel iterative explainable federated learning (FL) approach where a constrained resource allocation model and an \emph{explainer} exchange -- in a closed loop (CL) fashion -- soft attributions of the features as well as inference predictions to achieve a transparent and SLA-aware zero-touch service management (ZSM) of 6G network slices at RAN-Edge setup under non-independent identically distributed (non-IID) datasets. In particular, we quantitatively validate the faithfulness of the explanations via the so-called attribution-based \emph{confidence metric} that is included as a constraint in the run-time FL optimization task. In this respect, Integrated-Gradient (IG) as well as Input $\times$ Gradient and SHAP are used to generate the attributions for the turbo explainable FL (TEFL), wherefore simulation results under different methods confirm its superiority over an unconstrained Integrated-Gradient \emph{post-hoc} FL baseline.
翻译:第六代( 6G) 网络将明智地支持与各种垂直使用案例相关的大量共存和差异切片。 这种背景促使在严格的服务级别协议( SLAs) 下采用人工智能(AI) 驱动的零触摸管理与交响( MANO), 在严格服务级别协议( E2E) 中采用端对端切片( MANO) 。 具体地说, AI 黑盒在实际部署中的信誉可以通过解释 AI ( XAI) 工具, 以在切片生态系统中的互动行为体( 如租户、基础设施提供者和操作者)之间建立透明度。 在涡轮原则的启发下,本文件展示了一种全新的迭代可解释的硬化学习( FL) 方法, 受限资源分配模式和 Exemph{Explainerright( MAN) 交换, 以闭环( CLL) 的方式, 功能的软化属性以及推断预测, 以实现透明、 SA-awa- 零触摸服务管理( ZSM) 6G (ZSMA) 网络切分解, 在不依赖的 RFAN- Erial- Eli- Elial) 下设置, (nal- greal- deli- relial) 在不依赖下设置的( Nli- sliver) laudal) 等的( laudal) 数据级(national) 上, 等的 解调调调调 数据。