In this article we discuss classical theorems from Convex Geometry in the context of topological drawings and beyond. In a simple topological drawing of the complete graph $K_n$, any two edges share at most one point: either a common vertex or a point where they cross. Triangles of simple topological drawings can be viewed as convex sets. This gives a link to convex geometry. As our main result, we present a generalization of Kirchberger's Theorem that is of purely combinatorial nature. It turned out that this classical theorem also applies to "generalized signotopes" - a combinatorial generalization of simple topological drawings, which we introduce and investigate in the course of this article. As indicated by the name they are a generalization of signotopes, a structure studied in the context of encodings for arrangements of pseudolines. We also present a family of simple topological drawings with arbitrarily large Helly number, and a new proof of a topological generalization of Carath\'{e}odory's Theorem in the plane and discuss further classical theorems from Convex Geometry in the context of simple topological drawings.


翻译:在此篇文章中, 我们讨论来自Convex 地形图绘制的古典理论。 在完整的图形 $K_ n$ 的简单地貌图绘制中, 任何两个边缘都可以在最多一个点共享: 共同的顶点或它们跨越的某个点。 简单的顶点图绘制的三角可以被视为 convex 的一组。 这提供了与 convex 几何的链接。 作为我们的主要结果, 我们展示了Kirchberger 的理论的概括性, 纯粹是组合性的。 结果发现, 这个古典理论也适用于“ 通用的符号 ” —— 简单的顶点图画的组合性概括化, 我们在此篇文章中引入和调查。 正如它们的名称所显示的, 是符号图谱的概括性。 这是在伪线安排的编码背景下所研究的结构。 我们还展示了一组简单的带有任意大的Helly 数字的顶点图画, 以及一个新的证据, 表明Carathritographical 缩写成的顶层图象学背景 。 在平面上, 讨论简单的Conatritoritorial- degraphical- degraphicsmalemsmalsidems 。

0
下载
关闭预览

相关内容

最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月27日
Arxiv
0+阅读 · 2021年3月26日
VIP会员
相关VIP内容
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员