In this article we discuss classical theorems from Convex Geometry in the context of topological drawings and beyond. In a simple topological drawing of the complete graph $K_n$, any two edges share at most one point: either a common vertex or a point where they cross. Triangles of simple topological drawings can be viewed as convex sets. This gives a link to convex geometry. As our main result, we present a generalization of Kirchberger's Theorem that is of purely combinatorial nature. It turned out that this classical theorem also applies to "generalized signotopes" - a combinatorial generalization of simple topological drawings, which we introduce and investigate in the course of this article. As indicated by the name they are a generalization of signotopes, a structure studied in the context of encodings for arrangements of pseudolines. We also present a family of simple topological drawings with arbitrarily large Helly number, and a new proof of a topological generalization of Carath\'{e}odory's Theorem in the plane and discuss further classical theorems from Convex Geometry in the context of simple topological drawings.
翻译:在此篇文章中, 我们讨论来自Convex 地形图绘制的古典理论。 在完整的图形 $K_ n$ 的简单地貌图绘制中, 任何两个边缘都可以在最多一个点共享: 共同的顶点或它们跨越的某个点。 简单的顶点图绘制的三角可以被视为 convex 的一组。 这提供了与 convex 几何的链接。 作为我们的主要结果, 我们展示了Kirchberger 的理论的概括性, 纯粹是组合性的。 结果发现, 这个古典理论也适用于“ 通用的符号 ” —— 简单的顶点图画的组合性概括化, 我们在此篇文章中引入和调查。 正如它们的名称所显示的, 是符号图谱的概括性。 这是在伪线安排的编码背景下所研究的结构。 我们还展示了一组简单的带有任意大的Helly 数字的顶点图画, 以及一个新的证据, 表明Carathritographical 缩写成的顶层图象学背景 。 在平面上, 讨论简单的Conatritoritorial- degraphical- degraphicsmalemsmalsidems 。