In this work, we study the discrete logarithm problem in the context of TFNP - the complexity class of search problems with a syntactically guaranteed existence of a solution for all instances. Our main results establish that suitable variants of the discrete logarithm problem are complete for the complexity class PPP, respectively PWPP, i.e., the subclasses of TFNP capturing total search problems with a solution guaranteed by the pigeonhole principle, respectively the weak pigeonhole principle. Besides answering an open problem from the recent work of Sotiraki, Zampetakis, and Zirdelis (FOCS'18), our completeness results for PPP and PWPP have implications for the recent line of work proving conditional lower bounds for problems in TFNP under cryptographic assumptions. In particular, they highlight that any attempt at basing average-case hardness in subclasses of TFNP (other than PWPP and PPP) on the average-case hardness of the discrete logarithm problem must exploit its structural properties beyond what is necessary for constructions of collision-resistant hash functions. Additionally, our reductions provide new structural insights into the class PWPP by establishing two new PWPP-complete problems. First, the problem DOVE, a relaxation of the PPP-complete problem PIGEON. DOVE is the first PWPP-complete problem not defined in terms of an explicitly shrinking function. Second, the problem CLAW, a total search problem capturing the computational complexity of breaking claw-free permutations. In the context of TFNP, the PWPP-completeness of CLAW matches the known intrinsic relationship between collision-resistant hash functions and claw-free permutations established in the cryptographic literature.
翻译:在这项工作中,我们研究了在TFNP背景下的离散对数问题,即复杂的搜索问题,即所有情况都有综合保证的解决方案的存在。我们的主要结果证明,离散对数问题的合适变体在复杂的类PPP(分别是PWPP,即TFNP的亚类,以鸽子洞原则保证的解决方案,分别是脆弱的鸽子洞原则。除了要解决索蒂拉基、赞佩塔基斯和Zirdelis(FOCS'18)最近的工作所产生的一个公开问题外,我们对于PPP和PWPP的完整结果对最近的工作产生了影响,证明在加密假设下,对TFPPP问题有有条件的较低限制。 特别是,TFNP(除PWPP和PPPPP原则原则之外)的子类中,任何试图将平均硬度硬度的硬度建立在离子类(PWPrfrecial) 直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的对直径直径直径直径直径直径直的对数问题。