This paper develops a Multiset Rewriting language with explicit time for the specification and analysis of Time-Sensitive Distributed Systems (TSDS). Goals are often specified using explicit time constraints. A good trace is an infinite trace in which the goals are satisfied perpetually despite possible interference from the environment. In our previous work (FORMATS 2016), we discussed two desirable properties of TSDSes, realizability (there exists a good trace) and survivability (where, in addition, all admissible traces are good). Here we consider two additional properties, recoverability (all compliant traces do not reach points-of-no-return) and reliability (the system can always continue functioning using a good trace). Following (FORMATS 2016), we focus on a class of systems called Progressing Timed Systems (PTS), where intuitively only a finite number of actions can be carried out in a bounded time period. We prove that for this class of systems the properties of recoverability and reliability coincide and are PSPACE-complete. Moreover, if we impose a bound on time (as in bounded model-checking), we show that for PTS the reliability property is in the $\Delta_2^p$ class of the polynomial hierarchy, a subclass of PSPACE. We also show that the bounded survivability is both NP-hard and coNP-hard.


翻译:本文开发了一个多功能重写语言, 明确用于时间敏感分布系统( TSDS) 的规格和分析。 目标通常使用明确的时间限制来指定。 良好的跟踪是一个无限的痕迹, 尽管可能受到环境的干扰, 仍然可以永久地实现目标。 在先前的工作( FORMATS 2016)中, 我们讨论了TSDS的两种可取特性, 即可变性( 存在良好的跟踪) 和可生存性( 此外, 所有可接受痕迹都很好 ) 。 我们在这里考虑另外两个特性, 即可恢复性( 所有符合要求的痕迹都没有到达不归点) 和可靠性( 系统总是可以继续使用良好的追踪功能 ) 。 之后( FORMATS 2016) 我们关注被称为进步时间系统( PTSS) 的一类系统( PTSS), 其中只有有限数量的行动可以在受约束的时期内进行。 我们证明, 对于这类系统来说, 恢复性和可靠性的特性是同步的, 并且, 我们把PSISSA级的可靠性也显示, AS级的可靠性。

0
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关VIP内容
专知会员服务
95+阅读 · 2021年8月28日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员