To improve software quality, one needs to build test scenarios resembling the usage of a software product in the field. This task is rendered challenging when a product's customer base is large and diverse. In this scenario, existing profiling approaches, such as operational profiling, are difficult to apply. In this work, we consider publicly available video tutorials of a product to profile usage. Our goal is to construct an automatic approach to extract information about user actions from instructional videos. To achieve this goal, we use a Deep Convolutional Neural Network (DCNN) to recognize user actions. Our pilot study shows that a DCNN trained to recognize user actions in video can classify five different actions in a collection of 236 publicly available Microsoft Word tutorial videos (published on YouTube). In our empirical evaluation we report a mean average precision of 94.42% across all actions. This study demonstrates the efficacy of DCNN-based methods for extracting software usage information from videos. Moreover, this approach may aid in other software engineering activities that require information about customer usage of a product.
翻译:为了提高软件质量, 需要建立类似于软件产品在现场使用的测试情景。 当产品客户基础巨大且多样化时, 这项任务就具有挑战性。 在这种情景中, 现有的特征分析方法, 如操作特征分析等难以应用。 在这项工作中, 我们考虑公开提供产品视频辅导, 以便描述使用。 我们的目标是建立一个自动方法, 从教学视频中提取用户行动信息。 为了实现这一目标, 我们使用深革命神经网络( DCNNN) 来识别用户行动。 我们的试点研究表明, 受过识别视频用户行动的训练的DCNN可以对公众可公开查阅的236部微软 Word教程视频( 在YouTube上发布)中的5项不同行动进行分类。 我们的经验评估中报告, 在所有行动中平均有94.42%的准确率。 这项研究显示了基于DCNNN的从视频中提取软件使用信息的方法的有效性。 此外, 这种方法可能有助于其他需要客户使用产品信息的软件工程活动。