To improve software quality, one needs to build test scenarios resembling the usage of a software product in the field. This task is rendered challenging when a product's customer base is large and diverse. In this scenario, existing profiling approaches, such as operational profiling, are difficult to apply. In this work, we consider publicly available video tutorials of a product to profile usage. Our goal is to construct an automatic approach to extract information about user actions from instructional videos. To achieve this goal, we use a Deep Convolutional Neural Network (DCNN) to recognize user actions. Our pilot study shows that a DCNN trained to recognize user actions in video can classify five different actions in a collection of 236 publicly available Microsoft Word tutorial videos (published on YouTube). In our empirical evaluation we report a mean average precision of 94.42% across all actions. This study demonstrates the efficacy of DCNN-based methods for extracting software usage information from videos. Moreover, this approach may aid in other software engineering activities that require information about customer usage of a product.


翻译:为了提高软件质量, 需要建立类似于软件产品在现场使用的测试情景。 当产品客户基础巨大且多样化时, 这项任务就具有挑战性。 在这种情景中, 现有的特征分析方法, 如操作特征分析等难以应用。 在这项工作中, 我们考虑公开提供产品视频辅导, 以便描述使用。 我们的目标是建立一个自动方法, 从教学视频中提取用户行动信息。 为了实现这一目标, 我们使用深革命神经网络( DCNNN) 来识别用户行动。 我们的试点研究表明, 受过识别视频用户行动的训练的DCNN可以对公众可公开查阅的236部微软 Word教程视频( 在YouTube上发布)中的5项不同行动进行分类。 我们的经验评估中报告, 在所有行动中平均有94.42%的准确率。 这项研究显示了基于DCNNN的从视频中提取软件使用信息的方法的有效性。 此外, 这种方法可能有助于其他需要客户使用产品信息的软件工程活动。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
15+阅读 · 2020年2月6日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员