Accurate, detailed, and timely crop type mapping is a very valuable information for the institutions in order to create more accurate policies according to the needs of the citizens. In the last decade, the amount of available data dramatically increased, whether it can come from Remote Sensing (using Copernicus Sentinel-2 data) or directly from the farmers (providing in-situ crop information throughout the years and information on crop rotation). Nevertheless, the majority of the studies are restricted to the use of one modality (Remote Sensing data or crop rotation) and never fuse the Earth Observation data with domain knowledge like crop rotations. Moreover, when they use Earth Observation data they are mainly restrained to one year of data, not taking into account the past years. In this context, we propose to tackle a land use and crop type classification task using three data types, by using a Hierarchical Deep Learning algorithm modeling the crop rotations like a language model, the satellite signals like a speech signal and using the crop distribution as additional context vector. We obtained very promising results compared to classical approaches with significant performances, increasing the Accuracy by 5.1 points in a 28-class setting (.948), and the micro-F1 by 9.6 points in a 10-class setting (.887) using only a set of crop of interests selected by an expert. We finally proposed a data-augmentation technique to allow the model to classify the crop before the end of the season, which works surprisingly well in a multimodal setting.
翻译:准确、详细和及时的作物类型测绘是各机构非常宝贵的信息,以便根据公民的需要制定更准确的政策。在过去十年中,可用数据的数量急剧增加,无论是来自遥感(使用Copernicus Sentinel-2数据),还是来自农民的直接数据(提供全年原地作物信息和作物轮作信息),然而,大多数研究仅限于使用一种模式(远程遥感数据或作物轮作),从未将地球观测数据与作物轮作等领域知识相结合。此外,当它们使用地球观测数据时,它们主要限于一年的数据,而没有考虑到过去几年的情况。 在这方面,我们提议利用一种高层次深层次的深层次算法,模拟作物轮作作物轮作模型,如语言模型、卫星信号如语音信号,以及将作物分布作为额外的环境矢量。我们取得了非常有希望的结果,与典型方法相比,如作物轮作等,在使用地球观测数据时,它们主要限制为一年的数据,而没有考虑到过去几年的数据。在这方面,我们提议采用三种数据类型,即使用一种高层次的土壤分类方法,最后采用一种我们所选择的作物轮作的土壤分类,最后定的顺序为10-486,最后定的作物分类,最后采用一种微数据,最后定为10-188,最后定的顺序,采用一个缩为一种缩的土壤。(我们所选取的作物的土壤的土壤,最后定的顺序为10-188,最后定的微生物-18),最后的土壤。