The Lipschitz constant of neural networks plays an important role in several contexts of deep learning ranging from robustness certification and regularization to stability analysis of systems with neural network controllers. Obtaining tight bounds of the Lipschitz constant is therefore important. We introduce LipBaB, a branch and bound framework to compute certified bounds of the local Lipschitz constant of deep neural networks with ReLU activation functions up to any desired precision. We achieve this by bounding the norm of the Jacobians, corresponding to different activation patterns of the network caused within the input domain. Our algorithm can provide provably exact computation of the Lipschitz constant for any p-norm.


翻译:Lipschitz神经网络常数在从稳健度认证和正规化到神经网络控制器系统的稳定分析等若干深层学习背景下发挥着重要作用。因此,获得Lipschitz常数的严格界限非常重要。我们引入了LipBAB(一个分支和约束框架)来计算当地Lipschitz深神经网络常数的经认证的界限,并按任何需要的精确度启动RELU功能。我们通过将Jacobian人的规范与输入域内产生的网络的不同激活模式相匹配来做到这一点。我们的算法可以为任何 p-norm 提供精确的利普施茨常数计算。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
4+阅读 · 2020年1月17日
Arxiv
8+阅读 · 2019年2月15日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员