We present numerical methods based on the fast Fourier transform (FFT) to solve convolution integral equations on a semi-infinite interval (Wiener-Hopf equation) or on a finite interval (Fredholm equation). We extend and improve a FFT-based method for the Wiener-Hopf equation due to Henery, expressing it in terms of the Hilbert transform, and computing the latter in a more sophisticated way with sinc functions. We then generalise our method to the Fredholm equation reformulating it as two coupled Wiener-Hopf equations and solving them iteratively. We provide numerical tests and open-source code.
翻译:我们提出基于快速Fleier变换(FFT)的数值方法,用半无限间距(Wiener-Hopf等式)或有限间距(Fredholm等式)解析组合组合方程式。我们扩展并改进基于FFT的因Hener-Hopf等式的因Henery而生成的FFFT法,用Hilbert变换法表达,用更精密的方式用Sinc函数计算后者。然后我们把方法推广到Fredholm等式,将其改写成两个与Wiener-Hopf等式相结合的Wiener-Hopf等式,并反复解决它们。我们提供了数字测试和开源代码。