The area under a receiver operating characteristic curve (AUC) is a useful tool to assess the performance of continuous-scale diagnostic tests on binary classification. In this article, we propose an empirical likelihood (EL) method to construct confidence intervals for the AUC from data collected by ranked set sampling (RSS). The proposed EL-based method enables inferences without assumptions required in existing nonparametric methods and takes advantage of the sampling efficiency of RSS. We show that for both balanced and unbalanced RSS, the EL-based point estimate is the Mann-Whitney statistic, and confidence intervals can be obtained from a scaled chi-square distribution. Simulation studies and two case studies on diabetes and chronic kidney disease data show that the proposed method outperforms the existing methods.
翻译:接收器操作特征曲线(AUC)下的区域是评估二进制分类连续诊断测试的性能的有用工具,在本条中,我们提议了一种经验可能性(EL)方法,用按等级分类的抽样收集的数据为AUC建立信任间隔。拟议的EL方法使得在没有现有非参数方法所需假设的情况下可以推断出现有非参数方法所需的假设,并利用RSS的取样效率。我们表明,对于平衡和不平衡的RSS而言,基于EL的点估计值是曼-威特尼统计,从按比例分布的脊椎分布中可以取得信任间隔。糖尿病和慢性肾病的模拟研究和两个案例研究表明,拟议的方法优于现有方法。