We study signal processing tasks in which the signal is mapped via some generalized time-frequency transform to a higher dimensional time-frequency space, processed there, and synthesized to an output signal. We show how to approximate such methods using a quasi-Monte Carlo (QMC) approach. We consider cases where the time-frequency representation is redundant, having feature axes in addition to the time and frequency axes. The proposed QMC method allows sampling both efficiently and evenly such redundant time-frequency representations. Indeed, 1) the number of samples required for a certain accuracy is log-linear in the resolution of the signal space, and depends only weakly on the dimension of the redundant time-frequency space, and 2) the quasi-random samples have low discrepancy, so they are spread evenly in the redundant time-frequency space. One example of such redundant representation is the localizing time-frequency transform (LTFT), where the time-frequency plane is enhanced by a third axis. This higher dimensional time-frequency space improves the quality of some time-frequency signal processing tasks, like the phase vocoder (an audio signal processing effect). Since the computational complexity of the QMC is log-linear in the resolution of the signal space, this higher dimensional time-frequency space does not degrade the computation complexity of the proposed QMC method. The proposed QMC method is more efficient than standard Monte Carlo methods, since the deterministic QMC sample points are optimally spread in the time-frequency space, while random samples are not.


翻译:我们研究信号处理任务,通过某种通用的时间频率转换,将信号映射成更高维度的时间频率空间,在那里处理,并合成成一个输出信号。我们展示如何使用准蒙卡罗(QMC)方法来大致使用这种方法。我们考虑的时间频率代表方式是多余的,除了时间轴和频率轴之外还有特性轴。拟议的QMC方法允许对时间频率飞机进行高效率和均衡的取样,这种冗余时间频率表示方式既有效又均衡地进行取样。事实上,1 某种精确度所需的样本数量在信号空间的解析中是日射线-线,并且仅以多余的时间频率空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间的尺寸范围小于平流率标准计算方法。 Q由于计算方法的计算方法的复杂程度,因此,在空间空间空间空间空间空间频率的精确度计算方法的精确度分析方法中,Q的精确度是计算方法。Q的精确度计算方法是分辨率的精确度。Q的精确度计算方法是分辨率的精确度。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
22+阅读 · 2021年9月23日
专知会员服务
23+阅读 · 2021年4月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | TuckER:基于张量分解的知识图谱补全
开放知识图谱
34+阅读 · 2019年3月17日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月26日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | TuckER:基于张量分解的知识图谱补全
开放知识图谱
34+阅读 · 2019年3月17日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员