Financial studies require volatility based models which provides useful insights on risks related to investments. Stochastic volatility models are one of the most popular approaches to model volatility in such studies. The asset returns under study may come in multiple clusters which are not captured well assuming standard distributions. Mixture distributions are more appropriate in such situations. In this work, an algorithm is demonstrated which is capable of studying finite mixtures but with unknown number of components. This algorithm uses a Birth-Death process to adjust the number of components in the mixture distribution and the weights are assigned accordingly. This mixture distribution specification is then used for asset returns and a semi-parametric stochastic volatility model is fitted in a Bayesian framework. A specific case of Gaussian mixtures is studied. Using appropriate prior specification, Gibbs sampling method is used to generate posterior chains and assess model convergence. A case study of stock return data for State Bank of India is used to illustrate the methodology.
翻译:金融研究需要基于波动的模型,这些模型能对投资的风险提供有益的洞察力。托盘波动模型是这类研究中最受欢迎的模式波动方法之一。研究中的资产回报可能来自多个组群,这些组群没有很好地捕捉到标准分布。在这种情况下,混合分布更为合适。在这项工作中,一种算法被证明能够研究一定的混合物,但成分数量不明。这种算法使用出生死亡过程来调整混合物分布中的成分数量,并相应分配重量。这种混合物分配规格随后用于资产回报,一个半参数的随机挥发性模型被安装在贝耶斯框架内。研究高斯混合物的一个具体案例。使用适当的事先规格,使用Gibs抽样方法来生成外层链并评估模型的趋同。印度国家银行的股票回报数据案例研究用来说明该方法。