Convolutional Neural Networks (CNNs) such as ResNet-50, DenseNet-40 and ResNeXt-56 are severely over-parameterized, necessitating a consequent increase in the computational resources required for model training which scales exponentially for increments in model depth. In this paper, we propose an Entropy-Based Convolutional Layer Estimation (EBCLE) heuristic which is robust and simple, yet effective in resolving the problem of over-parameterization with regards to network depth of CNN model. The EBCLE heuristic employs a priori knowledge of the entropic data distribution of input datasets to determine an upper bound for convolutional network depth, beyond which identity transformations are prevalent offering insignificant contributions for enhancing model performance. Restricting depth redundancies by forcing feature compression and abstraction restricts over-parameterization while decreasing training time by 24.99% - 78.59% without degradation in model performance. We present empirical evidence to emphasize the relative effectiveness of broader, yet shallower models trained using the EBCLE heuristic, which maintains or outperforms baseline classification accuracies of narrower yet deeper models. The EBCLE heuristic is architecturally agnostic and EBCLE based CNN models restrict depth redundancies resulting in enhanced utilization of the available computational resources. The proposed EBCLE heuristic is a compelling technique for researchers to analytically justify their HyperParameter (HP) choices for CNNs. Empirical validation of the EBCLE heuristic in training CNN models was established on five benchmarking datasets (ImageNet32, CIFAR-10/100, STL-10, MNIST) and four network architectures (DenseNet, ResNet, ResNeXt and EfficientNet B0-B2) with appropriate statistical tests employed to infer any conclusive claims presented in this paper.


翻译:RESNet-50、DenseNet-40和ResNeXt-56等革命神经网络(CNN)严重超标,因此需要随之增加模型培训所需的计算资源,而模型深度的增量则要以指数为指数。在本文中,我们建议采用基于环境的革命层层模拟(EBCLE),它既有力又简单,但能有效解决与CNN的网络选择深度有关的超标化问题。EBCLE Heuristem利用了输入数据集的配置数据分配的先验性知识,以确定脉冲网络深度的上限,超出这一范围,身份转换为增强模型性能提供了微不足道的贡献。通过强制特征压缩和抽象化来限制超标度的深度,同时将培训时间减少24.99%至78.59%,而不会降低模型性能。我们提出了经验证据,用EBCLEEE的超值培训模型和较浅的模型,从而维持或超过CREBEVO的分析性深度分析模型,从而使得ELEAR-C的更深层次的深度数据分类。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
27+阅读 · 2021年7月16日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
专知会员服务
59+阅读 · 2020年3月19日
专知会员服务
158+阅读 · 2020年1月16日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
13+阅读 · 2019年5月15日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
已删除
将门创投
6+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
5+阅读 · 2017年9月8日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
13+阅读 · 2019年5月15日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
已删除
将门创投
6+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员