For the Helmholtz equation posed in the exterior of a Dirichlet obstacle, we prove that if there exists a family of quasimodes (as is the case when the exterior of the obstacle has stable trapped rays), then there exist near-zero eigenvalues of the standard variational formulation of the exterior Dirichlet problem (recall that this formulation involves truncating the exterior domain and applying the exterior Dirichlet-to-Neumann map on the truncation boundary). The significance of this result is a) the finite-element method for computing approximations to solutions of the Helmholtz equation is based on the standard variational formulation, and b) the location of eigenvalues, and especially near-zero ones, plays a key role in understanding how iterative solvers such as the generalised minimum residual method (GMRES) behave when used to solve linear systems, in particular those arising from the finite-element method. The result proved in this paper is thus the first step towards rigorously understanding how GMRES behaves when applied to discretisations of high-frequency Helmholtz problems under strong trapping (the subject of the companion paper [Marchand, Galkowski, Spence, Spence, 2021]).


翻译:对于在Drichlet障碍物外表外面所呈现的Helmholtz方程式,我们证明,如果存在一套准模型(例如,障碍物外面有稳定的固定射线),那么就存在外部Drichlet问题标准变异配方的接近零电子价值(回顾,这一配方涉及缩短外部域,并在脱轨边界上应用外部Drichlet-to-Neumann地图)。这一结果的意义是,在标准变异配方的基础上,计算Helmholtz方程式解决方案近似近似值的有限方法;以及b) 外部Drichlet问题标准变异配方的所在地,特别是近零异配值的位置,在理解用于解决线性系统的迭代解决方案,例如通用最低残留法(GMRES)如何运行时,特别是从有限偏差方法产生的系统。因此,本文所证明的结果是朝着严格了解GRES在高频 Helmholtz 标准变异配方面上如何运行的精确度方法迈出的第一步。 [Slmexbismax, roup romaking Gal, ropping the Gal roadbission] [Sal ropping brobilking bromission1, robilking] robildlegismaking robismaking]。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年12月10日
Arxiv
0+阅读 · 2021年3月3日
Arxiv
0+阅读 · 2021年3月3日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员