We consider GMRES applied to discretisations of the high-frequency Helmholtz equation with strong trapping; recall that in this situation the problem is exponentially ill-conditioned through an increasing sequence of frequencies. Under certain assumptions about the distribution of the eigenvalues, we prove upper bounds on how the number of GMRES iterations grows with the frequency. Our main focus is on boundary-integral-equation formulations of the exterior Dirichlet and Neumann obstacle problems in 2- and 3-d; for these problems, we investigate numerically the sharpness (in terms of dependence on frequency) of both our bounds and various quantities entering our bounds. This paper is therefore the first comprehensive study of the frequency-dependence of the number of GMRES iterations for Helmholtz boundary-integral equations under trapping.
翻译:我们认为GMRES适用于高频Helmholtz方程式的分解,并具有很强的陷阱;回顾,在这种情况下,问题因频率序列的增加而成倍恶化;根据对egenvalue的分布的某些假设,我们证明GMRES迭代数是如何随着频率增长的,我们的主要重点是2和3d的外部Drichlet和Neumann障碍问题的边界-整体-方程配方;对于这些问题,我们用数字来调查我们边界和进入我们边界的各种数量的锐度(对频率的依赖性),因此,本文是对Helmholtz边界-异质方程的频率依赖性的首次全面研究。