Springs are efficient in storing and returning elastic potential energy but are unable to hold the energy they store in the absence of an external load. Lockable springs use clutches to hold elastic potential energy in the absence of an external load, but have not yet been widely adopted in applications, partly because clutches introduce design complexity, reduce energy efficiency, and typically do not afford high fidelity control over the energy stored by the spring. Here, we present the design of a novel lockable compression spring that uses a small capstan clutch to passively lock a mechanical spring. The capstan clutch can lock over 1000 N force at any arbitrary deflection, unlock the spring in less than 10 ms with a control force less than 1 % of the maximal spring force, and provide an 80 % energy storage and return efficiency (comparable to a highly efficient electric motor operated at constant nominal speed). By retaining the form factor of a regular spring while providing high-fidelity locking capability even under large spring forces, the proposed design could facilitate the development of energy-efficient spring-based actuators and robots.
翻译:泉水在储存和归还弹性潜在能源方面是有效的,但无法在没有外部负荷的情况下保存储存的能源。 封闭泉水在没有外部负荷的情况下使用离合器来保持弹性潜在能源,但在应用中尚未被广泛采用,部分原因是离合器引入设计复杂性,降低能效,而且通常对泉水储存的能源没有高度忠诚的控制。 这里, 我们展示了一个新型的可锁定压缩弹簧的设计, 该弹簧使用一个小型的卡普斯坦魔爪来被动地锁定机械弹簧。 卡普斯坦控制器可以在任何任意偏转时锁定超过1000N的力量,在10米以下释放泉水,控制力小于最大弹簧力的1%,并提供80%的能源储存和回报效率(可与以固定名义速度运行的高效电动发动机相比 ) 。 通过保留定期春天的形式因素,同时提供高不易触动的弹簧锁能力, 拟议的设计可以促进节能弹簧操纵器和机器人的发展。