Cascaded binary hypothesis testing is studied in this paper with two decision centers at the relay and the receiver. All terminals have their own observations, where we assume that the observations at the transmitter, the relay, and the receiver form a Markov chain in this order. The communication occurs over two hops, from the transmitter to the relay and from the relay to the receiver. Expected rate constraints are imposed on both communication links. In this work, we characterize the optimal type-II error exponents at the two decision centers under constraints on the allowed type-I error probabilities. Our recent work characterized the optimal type-II error exponents in the special case when the two decision centers have same type-I error constraints and provided an achievability scheme for the general setup. To obtain the exact characterization for the general case, in this paper we provide a new converse proof as well as a new matching achievability scheme. Our results indicate that under unequal type-I error constraints at the relay and the receiver, a tradeoff arises between the maximum type-II error probabilities at these two terminals. Previous results showed that such a tradeoff does not exist under equal type-I error constraints or under general type-I error constraints when a maximum rate constraint is imposed on the communication links.
翻译:本文用中继器和接收器的两个决定中心研究了分包的二进假设测试。 所有终端都有自己的观察, 我们假设发报机、 中继器和接收器的观察依此顺序形成一个 Markov 链。 通信在从发报机到中继器和中继器两个跳跃中发生。 预期利率限制对两个通信连接都施加了。 在这项工作中, 我们给两个决定中心在允许的一型错误概率限制下最优的二型错误推理者定性。 我们最近的工作在特殊情况下的二型错误最佳推理者特征是, 当两个决定中心有相同的一型错误限制, 并且为一般设置的设置提供了一种可实现性计划。 为了准确描述一般情况, 我们在本文件中提供了一个新的反向证据, 以及一个新的匹配性可实现性计划。 我们的结果表明, 在允许的一型错误限制下, 中继器和接收器在两种终端的最大二型错误概率差异之间, 我们最近的工作特征是, 当两个终端的二型错误概率最大, 之前的结果显示在一般的一型限制下, 一型限制是相同的, 。 在一般的一型限制下, 一型限制是相同的限制 。