Adaptive traffic signal control plays a significant role in the construction of smart cities. This task is challenging because of many essential factors, such as cooperation among neighboring intersections and dynamic traffic scenarios. First, to facilitate cooperation of traffic signals, existing work adopts graph neural networks to incorporate the temporal and spatial influences of the surrounding intersections into the target intersection, where spatial-temporal information is used separately. However, one drawback of these methods is that the spatial-temporal correlations are not adequately exploited to obtain a better control scheme. Second, in a dynamic traffic environment, the historical state of the intersection is also critical for predicting future signal switching. Previous work mainly solves this problem using the current intersection's state, neglecting the fact that traffic flow is continuously changing both spatially and temporally and does not handle the historical state. In this paper, we propose a novel neural network framework named DynSTGAT, which integrates dynamic historical state into a new spatial-temporal graph attention network to address the above two problems. More specifically, our DynSTGAT model employs a novel multi-head graph attention mechanism, which aims to adequately exploit the joint relations of spatial-temporal information. Then, to efficiently utilize the historical state information of the intersection, we design a sequence model with the temporal convolutional network (TCN) to capture the historical information and further merge it with the spatial information to improve its performance. Extensive experiments conducted in the multi-intersection scenario on synthetic data and real-world data confirm that our method can achieve superior performance in travel time and throughput against the state-of-the-art methods.


翻译:适应性交通信号控制在建设智能城市方面起着重要作用。 这项任务之所以具有挑战性,是因为许多基本因素, 如相邻交叉点和动态交通情景之间的合作。 首先,为了便利交通信号的合作,现有工作采用图形神经网络,将周围交叉点的时间和空间影响纳入目标交叉点, 空间时空信息被分别使用。 但是,这些方法的一个缺点是, 空间- 时空关系没有被充分利用, 以获得更好的控制机制。 其次, 在动态交通环境中, 路交点的历史状态对于预测未来信号转换也至关重要。 先前的工作主要是利用当前路交点状态解决这个问题, 忽略交通流动在空间和时间上不断变化的事实, 而不处理历史状态。 在本文中, 我们提出一个新的神经网络框架, 将动态历史状态纳入新的时空图关注网络, 以进一步解决上述两个问题。 更具体地说, 我们的DynSTGAT模型使用新的多头图关注点机制, 来预测未来信号转换。 先前的工作主要是使用当前路交路交点状态,, 从而充分利用历史序列中的数据, 来改善我们空间- 动态网络的同步数据,,, 从而实现空间- 的同步信息的同步信息的同步数据,, 从而实现空间- 的同步的同步的同步数据, 和同步网络的同步数据, 的同步数据, 以同步数据, 以同步的同步的同步的同步的同步的同步的同步的同步数据,,,, 和同步信息, 以同步的同步的同步的同步的同步数据,,,, 动态的同步的同步的同步数据,,, 和同步的同步的同步的同步的同步的同步的同步的同步的运行,,,,,,,,,,,,,,,, 运行, 运行,, 运行, 动态的同步的同步的同步的运行, 运行, 运行, 运行,,,,, 运行, 运行, 运行, 运行, 运行, 运行, 运行, 运行, 运行, 运行 运行 运行 运行的 运行的 运行的 运行的 运行 运行

0
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
专知会员服务
38+阅读 · 2021年10月13日
【WSDM2021】注意力流:时间序列网络中的可视化影响力
专知会员服务
24+阅读 · 2021年2月20日
【AAAI2021】Graph Diffusion Network提升交通流量预测精度
专知会员服务
54+阅读 · 2021年1月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2021年2月15日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
6+阅读 · 2019年4月8日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员