User and item attributes are essential side-information; their interactions (i.e., their co-occurrence in the sample data) can significantly enhance prediction accuracy in various recommender systems. We identify two different types of attribute interactions, inner interactions and cross interactions: inner interactions are those between only user attributes or those between only item attributes; cross interactions are those between user attributes and item attributes. Existing models do not distinguish these two types of attribute interactions, which may not be the most effective way to exploit the information carried by the interactions. To address this drawback, we propose a neural Graph Matching based Collaborative Filtering model (GMCF), which effectively captures the two types of attribute interactions through modeling and aggregating attribute interactions in a graph matching structure for recommendation. In our model, the two essential recommendation procedures, characteristic learning and preference matching, are explicitly conducted through graph learning (based on inner interactions) and node matching (based on cross interactions), respectively. Experimental results show that our model outperforms state-of-the-art models. Further studies verify the effectiveness of GMCF in improving the accuracy of recommendation.
翻译:用户和项目属性是基本的侧边信息;它们的相互作用(即其在抽样数据中的共生关系)可以大大提高各种建议系统的预测准确性。我们确定了两种不同类型的属性相互作用、内互动和交叉互动:内互动是仅属于用户属性之间的那些互动,还是仅属于项目属性之间的那些;交叉互动是用户属性和项目属性之间的那些;现有模型没有区分这两种类型的属性相互作用,这也许不是利用互动所传递的信息的最有效方式。为解决这一缺陷,我们建议采用基于神经图表的匹配协作过滤模型(GMCF),该模型通过在建议的图表匹配结构中建模和汇总属性互动有效捕捉两种类型的属性互动。在我们的模型中,两个基本的建议程序,即典型学习和偏好匹配,分别通过图表学习(基于内部互动)和节点匹配(基于交叉互动)明确进行。实验结果显示,我们的模型不符合最新模式。进一步研究核实了GMCF在提高建议准确性方面的有效性。