We present a graph-based approach for the data management tasks and the efficient operation of a system for session-based next-item recommendations. The proposed method can collect data continuously and incrementally from an ecommerce web site, thus seemingly prepare the necessary data infrastructure for the recommendation algorithm to operate without any excessive training phase. Our work aims at developing a recommender method that represents a balance between data processing and management efficiency requirements and the effectiveness of the recommendations produced. We use the Neo4j graph database to implement a prototype of such a system. Furthermore, we use an industry dataset corresponding to a typical e-commerce session-based scenario, and we report on experiments using our graph-based approach and other state-of-the-art machine learning and deep learning methods.
翻译:我们为数据管理任务和基于届会的下一个项目建议的系统的有效运行提出了一个基于图表的方法; 拟议的方法可以从电子商务网站不断和逐步收集数据,从而似乎为建议算法的运作准备必要的数据基础设施,而不经过任何过度的培训阶段; 我们的工作旨在制定一种建议方法,在数据处理和管理效率要求与所提出建议的有效性之间保持平衡; 我们使用Neo4j图数据库来实施这样一个系统的原型; 此外,我们使用一个与典型的电子商务会议情景相对应的行业数据集,我们报告使用我们的基于图表的方法和其他最先进的机器学习和深层学习方法进行实验的情况。