Pandora's Box is a central problem in decision making under uncertainty that can model various real life scenarios. In this problem we are given $n$ boxes, each with a fixed opening cost, and an unknown value drawn from a known distribution, only revealed if we pay the opening cost. Our goal is to find a strategy for opening boxes to minimize the sum of the value selected and the opening cost paid. In this work we revisit Pandora's Box when the value distributions are correlated, first studied in Chawla et al. (arXiv:1911.01632). We show that the optimal algorithm for the independent case, given by Weitzman's rule, directly works for the correlated case. In fact, our algorithm results in significantly improved approximation guarantees compared to the previous work, while also being substantially simpler. We finally show how to implement the rule given only sample access to the correlated distribution of values. Specifically, we find that a number of samples that is polynomial in the number of boxes is sufficient for the algorithm to work.


翻译:潘多拉的“ 盒子” 是一个在不确定性下决策的中心问题, 它可以模拟各种真实生活情景。 在这个问题中, 我们得到的是一美元盒子, 每个都有固定的开场成本, 以及从已知发行中提取的未知值, 只有在我们支付开场成本时才透露出来。 我们的目标是找到一个策略, 打开盒子, 以尽量减少所选价值和所支付的开场成本的总和。 在这项工作中, 当价值分布是相互关联的时, 我们重新查看了潘多拉的“ 盒子 ”, 最初在Chawla 等人( arXiv: 1911. 01632) 中研究过, 我们发现, 由魏茨曼 规则给出的独立案例的最佳算法, 直接为相关案例运作。 事实上, 我们的算法结果大大改进了近似保证, 同时也大大简化了。 我们最后展示了如何执行这一规则, 只给相关价值分布的样本使用。 具体地说, 我们发现, 在框数中具有多数值的样本, 足以使算法发挥作用 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
11+阅读 · 2020年12月2日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员