This paper derives time-uniform confidence sequences (CS) for causal effects in experimental and observational settings. A confidence sequence for a target parameter $\psi$ is a sequence of confidence intervals $(C_t)_{t=1}^\infty$ such that every one of these intervals simultaneously captures $\psi$ with high probability. Such CSs provide valid statistical inference for $\psi$ at arbitrary stopping times, unlike classical fixed-time confidence intervals which require the sample size to be fixed in advance. Existing methods for constructing CSs focus on the nonasymptotic regime where certain assumptions (such as known bounds on the random variables) are imposed, while doubly robust estimators of causal effects rely on (asymptotic) semiparametric theory. We use sequential versions of central limit theorem arguments to construct large-sample CSs for causal estimands, with a particular focus on the average treatment effect (ATE) under nonparametric conditions. These CSs allow analysts to update inferences about the ATE in lieu of new data, and experiments can be continuously monitored, stopped, or continued for any data-dependent reason, all while controlling the type-I error. Finally, we describe how these CSs readily extend to other causal estimands and estimators, providing a new framework for sequential causal inference in a wide array of problems.
翻译:本文为实验和观察环境中的因果关系提供了时间统一信任序列(CS) 。 目标参数 $\ psi$ 的信任序列是信任间隔的序列 $( t)\\\ t=\\\ t=1\\ incinfty$, 以便其中每个间隔都同时捕捉$\ psi$, 概率高。 这些 CS 提供了任意停留时用于计算因果估计值的大型 CS 有效统计推论, 不同于传统的固定时间信任间隔, 需要事先确定样本大小。 构建 CS 的现有方法侧重于非保护性制度, 即某些假设( 如已知随机变量的界限 ), 是一个安全性体系, 而对因果关系影响的估算者则双倍强烈地依赖( ) 半参数 。 我们使用中央限制参数的顺序版本来构建因果估计值的大型 CSS, 特别侧重于非对比性条件下的平均处理效果 。 这些 CSSS 允许分析员在新的直径框架中更新有关ATE的推论, 取代新的数据, 和直径直径性实验可以持续地描述这些直径直判的错误 。