Entanglement is a quantum resource, in some ways analogous to randomness in classical computation. Inspired by recent work of Gheorghiu and Hoban, we define the notion of "pseudoentanglement'', a property exhibited by ensembles of efficiently constructible quantum states which are indistinguishable from quantum states with maximal entanglement. Our construction relies on the notion of quantum pseudorandom states -- first defined by Ji, Liu and Song -- which are efficiently constructible states indistinguishable from (maximally entangled) Haar-random states. Specifically, we give a construction of pseudoentangled states with entanglement entropy arbitrarily close to $\log n$ across every cut, a tight bound providing an exponential separation between computational vs information theoretic quantum pseudorandomness. We discuss applications of this result to Matrix Product State testing, entanglement distillation, and the complexity of the AdS/CFT correspondence. As compared with a previous version of this manuscript (arXiv:2211.00747v1) this version introduces a new pseudorandom state construction, has a simpler proof of correctness, and achieves a technically stronger result of low entanglement across all cuts simultaneously.
翻译:摘要:纠缠是一种量子资源,某种程度上类似于经典计算中的随机性。受Gheorghiu和Hoban最近工作的启发,我们定义了“伪纠缠”的概念,这是一种由有效构造的量子态集合所表现的性质,它们与具有最大纠缠的量子态难以区分。我们的构造依赖于量子赝随机态的概念--由Ji、Liu和Song首先定义--它们是一种有效构造的态,难以区分于(最大纠缠的)Haar随机态。具体而言,我们给出了一种伪纠缠态的构造,其在每个切割面上的纠缠熵可以任意接近$\log n$,这是一个紧密的界限,提供了计算与信息理论量子赝随机性之间的指数分离。我们讨论了这一结果在矩阵积态测试、纠缠提炼和AdS/CFT对应的复杂性方面的应用。与本手稿的上一版本(arXiv:2211.00747v1)相比,这个版本引入了一个新的赝随机态构造,具有更简单的正确性证明,并同时实现了所有切面上的低纠缠。