Image Quality Assessment (IQA) metrics are widely used to quantitatively estimate the extent of image degradation following some forming, restoring, transforming, or enhancing algorithms. We present PyTorch Image Quality (PIQ), a usability-centric library that contains the most popular modern IQA algorithms, guaranteed to be correctly implemented according to their original propositions and thoroughly verified. In this paper, we detail the principles behind the foundation of the library, describe the evaluation strategy that makes it reliable, provide the benchmarks that showcase the performance-time trade-offs, and underline the benefits of GPU acceleration given the library is used within the PyTorch backend. PyTorch Image Quality is an open source software: https://github.com/photosynthesis-team/piq/.
翻译:图像质量评估(IQA)指标被广泛用于定量估计图像在某种形成、恢复、转变或增强算法之后的退化程度。我们介绍了PyTorch图像质量(PiQ),这是一个拥有最受欢迎的现代IQA算法的可使用性中心图书馆,保证根据其原始主张正确实施并经过彻底核实。在本文中,我们详细介绍了图书馆基础背后的原则,描述了使其可靠的评价战略,提供了展示性能-时间权衡的基准,并强调了GPU加速的好处,因为图书馆在PyTorch后端使用。PyTorch图像质量是一个开放源软件:https://github.com/photosynthis-team/piq/。