In this paper, we propose multicontinuum splitting schemes for multiscale problems, focusing on a parabolic equation with a high-contrast coefficient. Using the framework of multicontinuum homogenization, we introduce spatially smooth macroscopic variables and decompose the multicontinuum solution space into two components to effectively separate the dynamics at different speeds (or the effects of contrast in high-contrast cases). By treating the component containing fast dynamics (or dependent on the contrast) implicitly and the component containing slow dynamics (or independent of the contrast) explicitly, we construct partially explicit time discretization schemes, which can reduce computational cost. The derived stability conditions are contrast-independent, provided the continua are chosen appropriately. Additionally, we discuss possible methods to obtain an optimized decomposition of the solution space, which relaxes the stability conditions while enhancing computational efficiency. A Rayleigh quotient problem in tensor form is formulated, and simplifications are achieved under certain assumptions. Finally, we present numerical results for various coefficient fields and different continua to validate our proposed approach. It can be observed that the multicontinuum splitting schemes enjoy high accuracy and efficiency.
翻译:暂无翻译