This primer describes the statistical uncertainty in mechanistic models and provides R code to quantify it. We begin with an overview of mechanistic models for infectious disease, and then describe the sources of statistical uncertainty in the context of a case study on SARS-CoV-2. We describe the statistical uncertainty as belonging to three categories: data uncertainty, stochastic uncertainty, and structural uncertainty. We demonstrate how to account for each of these via statistical uncertainty measures and sensitivity analyses broadly, as well as in a specific case study on estimating the basic reproductive number, $R_0$, for SARS-CoV-2.
翻译:本基本材料描述机械模型的统计不确定性,并提供R代码进行量化。我们首先概述传染病的机械模型,然后在SARS-COV-2案例研究中描述统计不确定性的来源。我们描述统计不确定性属于三类:数据不确定性、随机不确定性和结构不确定性。我们通过统计不确定性计量和广泛敏感性分析,以及在关于SARS-COV-2基本生殖数($R_0)估算的具体案例研究中,说明如何解释其中每一种情况。