We develop a method to study sufficient conditions for perfect mixed tilings. Our framework allows the embedding of bounded degree graphs $H$ with components of sublinear order. As a corollary, we recover and extend the work of K\"uhn and Osthus regarding sufficient minimum degree conditions for perfect $F$-tilings (for an arbitrary fixed graph $F$) by replacing the $F$-tiling with the aforementioned graphs $H$. Moreover, we obtain analogous results for degree sequences and in the setting of uniformly dense graphs. Finally, we asymptotically resolve a conjecture of Koml\'os in a strong sense.
翻译:我们开发了一种方法来研究完美混合砖块的足够条件。 我们的框架允许嵌入约束度图$H$与亚线性顺序的组成部分。 作为必然结果, 我们恢复并延长K\'uhn和Osthus的工作, 即以上述图表$H$取代F$-tils(任意固定图形$F$ ), 使K\'uhn和Osthus的工作达到最起码的完美度条件。 此外, 在度序列和统一密度图形设置方面, 我们获得了类似的结果 。 最后, 我们从强烈的意义上, 我们几乎不折不扣地解决了 Koml\os 的方位 。