We consider the problem of learning multioutput function classes in batch and online settings. In both settings, we show that a multioutput function class is learnable if and only if each single-output restriction of the function class is learnable. This provides a complete characterization of the learnability of multilabel classification and multioutput regression in both batch and online settings. As an extension, we also consider multilabel learnability in the bandit feedback setting and show a similar characterization as in the full-feedback setting.
翻译:我们考虑批处理和在线设置中学习多输出函数类的问题。对于这两种情况,我们证明了一个多输出函数类是可学习的,当且仅当它的每个单输出函数类都是可学习的。这提供了多标签分类和多输出回归在批处理和在线设置下可学习性的完整表征。扩展地,我们还考虑了在强化学习反馈设置下的多标签可学习性,并证明了与全反馈设置相同的表征。