AI and data driven solutions have been applied to different fields with outperforming and promising results. In this research work we apply k-Nearest Neighbours, eXtreme Gradient Boosting and Random Forest classifiers to direction detection problem of three cryptocurrency markets. Our input data includes price data and technical indicators. We use these classifiers to design a strategy to trade in those markets. Our test results on unseen data shows a great potential for this approach in helping investors with an expert system to exploit the market and gain profit. Our highest gain for an unseen 66 day span is 860 dollars per 1800 dollars investment. We also discuss limitations of these approaches and their potential impact to Efficient Market Hypothesis.
翻译:AI和数据驱动的解决方案已应用于不同领域,其效果优异和前景看好。在这项研究中,我们运用k-Nearest nearest neneghest, eXtreme Gradient Bobtsing 和随机森林分类器来指导三个加密货币市场的发现问题。我们的投入数据包括价格数据和技术指标。我们利用这些分类器来设计这些市场的贸易战略。我们对隐蔽数据的测试结果表明,这一方法极有可能帮助拥有专家系统的投资者利用市场并获得利润。我们无法预见的66天的最大收益是每1800美元投资860美元。我们还讨论了这些方法的局限性及其对高效市场假药的潜在影响。