With the increasing amount of reliance on digital data and computer networks by corporations and the public in general, the occurrence of cyber attacks has become a great threat to the normal functioning of our society. Intrusion detection systems seek to address this threat by preemptively detecting attacks in real time while attempting to block them or minimizing their damage. These systems can function in many ways being some of them based on artificial intelligence methods. Datasets containing both normal network traffic and cyber attacks are used for training these algorithms so that they can learn the underlying patterns of network-based data. The CIDDS-001 is one of the most used datasets for network-based intrusion detection research. Regarding this dataset, in the majority of works published so far, the Class label was used for training machine learning algorithms. However, there is another label in the CIDDS-001, AttackType, that seems very promising for this purpose and remains considerably unexplored. This work seeks to make a comparison between two machine learning models, K-Nearest Neighbours and Random Forest, which were trained with both these labels in order to ascertain whether AttackType can produce reliable results in comparison with the Class label.


翻译:随着公司和一般公众日益依赖数字数据和计算机网络,网络攻击的发生已成为对我国社会正常运行的巨大威胁,入侵探测系统力求通过实时先发制人地探测攻击来应对这一威胁,同时试图阻止或尽量减少其破坏。这些系统在许多方面可以发挥功能,其中一些是人工智能方法。包含正常网络交通和网络攻击的数据集被用于培训这些算法,以便他们能够了解网络数据的基本模式。CIDDS-001是网络入侵探测研究中最常用的数据集之一。关于这一数据集,在迄今为止发表的大多数著作中,该类标签被用于培训机器学习算法。然而,CIDDS-001、AttackType中还有另一个标签,对于这个目的似乎很有希望,而且仍然相当没有被探索。这项工作试图比较两个机器学习模型,即K-Nearest Briders和Rand Forest,这两个模型都经过了这两个标签的培训,以便确定Battype能否与类标签进行可靠的比较。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员